Maximum principles for a time–space fractional diffusion equation
نویسندگان
چکیده
منابع مشابه
Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
Abstract. In earlier papers Saxena et al. (2002, 2003) derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which extended the work of Haubold and Mathai (2000). The object of the present paper is to investigate the solution of a unified form of fractional kinetic equation in which the free term contains any integrable function f(t),...
متن کاملFractional-calculus diffusion equation
BACKGROUND Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. RESULTS The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carri...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملFinite difference approximations for a fractional diffusion/anti-diffusion equation
A class of finite difference schemes for solving a fractional anti-diffusive equation, recently proposed by Andrew C. Fowler to describe the dynamics of dunes, is considered. Their linear stability is analyzed using the standard Von Neumann analysis: stability criteria are found and checked numerically. Moreover, we investigate the consistency and convergence of these schemes.
متن کاملConvergence of a Kinetic Equation to a Fractional Diffusion Equation
The understanding of thermal conductance in both classical and quantum mechanical systems is one of the fundamental problems of non-equilibrium statistical mechanics. A particular aspect that has attracted much interest is the observation that autonomous translation invariant systems in dimensions one and two exhibit anomalously large conductivity. The canonical example here is a chain of anhar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2016
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.06.010